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Local features: main components
1) Detection: Identify the f a‘

Interest points

2) Description :Extract feature 9@
. - X =[x,
vector descriptor surrounding

each interest point.

3) Matching: Determine X, =[x, ..., x?]
correspondence between . |
descriptors in two views 5.3 g

Kristen Grauman



i Where can we use it?

= Automate object tracking
Point matching for computing disparity

Stereo calibration
= Estimation of fundamental matrix

Motion based segmentation
Recognition

3D object reconstruction
Robot navigation

Image retrieval and indexing



Goal: interest operator repeatability

* \We want to detect (at least some of) the
same points in both images.

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



Goal: descriptor distinctiveness

« \We want to be able to reliably determine
which point goes with which.

« Must provide some invariance to geometric
and photometric differences between the two
views.

Kristen Grauman



Some patches can be localized
or matched with higher accuracy than

others.




Local features: main components

1) Detection: Identify the
Interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



What Is an interest point

= EXpressive texture

= The point at which the direction of the
boundary of object changes abruptly

= Intersection point between two or more
edge segments




Synthetic & Real
i Interest Points

Corners are indicated in red



Properties of Interest Point
i Detectors

= Detect all (or most) true interest points
= No false interest points

= Well localized.

= Robust with respect to noise.

= Efficient detection



Possible Approaches to
i Corner Detection

= Based on brightness of images
= Usually image derivatives

= Based on boundary extraction
= First step edge detection
= Curvature analysis of edges



i Harris Corner Detector

= Corner point can be recognized in a window

= Shifting a window In any direction should give
a large change in intensity

[ NG

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



i Basic Idea

“flat” region: “edge’: “corner’:
no change in no change along significant change

all directions the edge direction In all directions



‘L Aperture Problem




Correlation
f®h=> > f(k,Dh(i+k, j+1)

——»

f = Image
h = Kernel
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iCorreIation

f®h= ZZ f(k, |)h(l + k, j—I— |) Cross correlation
k |

f®f :sz(k’l)f(l + Kk, J _|_|) Auto correlation
k |



Correlation Vs SSD
SSD:ZZ(f(k,l) h(|-|-k J+|)) Sum of Squares Difference

lllllll

SSD = ZZ f;}/l —2h(i+k, j+D)f(k,1)+h(i+ ,j+|)2)
e Sp - ZZ ~2h(i+k, j+1)f (k1))
SSD = ZZ 2h(i+k, j+1)f(k,1))

maximize

Correlatlon ZZ (i+k, j+1)f(k,1))

f®f= ZZf )E(i+k, j+1)
k |




Mathematics of Harris

i Detector

= Change of intensity for the shift (u,v)

E(u,v)=) [1(x+u,y+v) = 1(x,y)I
X,y n shifte(ﬂﬁtensity intensity

Auto-correlation
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Window functions -

UNIFORM GAUSSIAN



Auto-Correlation




‘L Taylor Series

/(xX) Can be represented at point a in terms of its derivatives

(o
J!

fa)+ a0+

f"(a)

T (x-a)p+--.
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Mathematics of Harris

i Detector
W)=Y wix,y) [1(x+U,y+v) = 1(x, y)P

XY windowfunction shifted intensity intensity
E(u,v) = Z w(x,y) [1(x,y)+ul, +Vvl, —1(x,y)]? Tavior seres
%Y window function shifted mtensity intensity

E(u,v)=> w(x,y)[ul,+vl,]°

E(uv)= ZW(XV){” V)(:yﬂ
E(u) = Z w0y V)[:y](' 'Y{?/j

E(uv)=(0 V){%:W(X’y)[:z)(lx Iy)}(t} E(u,v)=(u V)M(sj



Mathematics of Harris

|

E(uv) = (0 V)Mu] M = ZW(X Y){H -

= E(u,v) Is an equation of an elllpse, where M is the
covariance

= Let A, and 4, be eigenvalues of M

direction of the fastest change

direction of the
slowest change

(M)

/

|



Eigen Vectors and Eigen Values

The eigen vector, x, of a matrix A is a special vector, with
the following property

Ax=Ax Where A Is called eigen value

To find eigen values of a matrix A first find the roots of:
detd—Al)=0

Then solve the following linear system for each eigen
value to find corresponding eigen vector

(A-A)x=0



Example

41 x,=|2] x3=|0
4 0 0

-1 2 0
0 3 4
Eigen Values
0 07
A =T, A=3A=-1
1 1 1

Eigen Vectors



Eigen Values

det(4—A)=0
(-1 2 0] [1 0 O
det( 0 3 4|-40 1 0))=0
0 0 7| [0 0 1
—1-1 2 0 |
det( 0 3-14 4 D=0

0 0 7-4

(-1-)(EB-D)(T-4)-0)=0
(~1-)B-1)T-24)=0
A=-1, A=3, A=7



Eigen Vectors

(A—ADx=0
—1 2 0] [1 0 0][x
0 3 4/+{0 1 0))x,
0 07|00 1]|x
02 0]x]| [0
0 4 4|x,|=|0
0 0 8|x| |0
-
x,=|0
0

0+2x,+0 =0
0+4x, +4x, =0
0+0+8x, =0

6 =1, %=0 %=0



Mathematics of Harris
Detector

Classification of
Image points using
eigenvalues of M:




Mathematics of Harris

i Detector

= Measure of cornerness in terms of 4, 4,

M —

G
0 4

R =det M —k(traceM )’ R=44,—k(4+2,)



Mathematics of Harris

i Detector

R depends only on
eigenvalues of M

A

R Is large for a corner

* R Is negative with large
magnitude for an edge

* |R| is small for a flat
region







Compute corner response




iFind points with large corner response: /A= threshold




Take only the points of local maxima of /A

If pixel value is
greater than

its neighbors
then it is a local
maxima.






ther Version of Harris
etectors
R = ;i1 — 0512 Triggs

_ det(M) 44
trace(M), A, +4,

Szeliski (Harmonic mean)

R = j,l Shi-Tomasi
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= = Harris

— — - Harmonic mean
——— Shi=Tomasi




i Algorithm

g Compute horizontal and vertical derivatives of image
I, and Iy.

= Compute three images corresponding to three terms
In matrix M.

= Convolve these three images with a larger Gaussian
(window).

= Compute scalar cornerness value using one of the R
measures.

s Find local maxima above some threshold as detected
interest noints.



‘L Reading Material

s Section 4.1.1 Feature Detectors

m Richard Szeliski, "Computer Vision: Algorithms and Application®,
Springer.




